Metric theories of gravity for galactic dynamics

and gravitational lenses.

SERGIO MENDOZA <sergio@mendozza.org> http://www.mendozza.org/sergio INSTITUTO DE ASTRONOMÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO (UNAM)

Talk available in

http://www.mendozza.org/sergio/modifiedgravity

Lecture 01, INAOE 10th november, 2008

 \checkmark Is there something wrong with modifying the standard laws of physics?

1 Introduction

- Astronomers call dark anything they cannot comprehend. E.g. dark matter and dark energy.
- ☆ Neptune was a dark matter candidate on his time. Bouvard (1821),
 Adams (1843) & Airy (and independently Le Verrier -1846) postulated its existence due to anomalous movement of Uranus.
- ☆ Le Verrier (1900's) proposed that the motion of the perihelium of mercury was produced by an unknown planet: *Vulcan*, which was never found.
- ☆ Einstein (1915) calculated that mercury's precession was a natural consequence of his modification to the Universal law of gravitation.

Dark matter candidates at the beginning of the 20th century

2 Are all the laws of physics valid at all scales?

- \checkmark In 1913, Bohr proposed his atom postulates to explain atomic spectra.
- \checkmark We all know now that classical physics is not valid at atomic scales.

- ☆ General relativity tests have been made at scales less than the solar system scale (~ 10^{11} m).
- ☆ Newtonian mechanics is not valid in scales of the order of ten to fifteen orders of magnitude below our standard scales (size of the Hydrogen atom).
- ☆ Is it possible that at scales larger than (~ 10^{20} m, galactic scales) solar system sizes gravity needs a modification?
- ☆ Note that measurements of e.g. WMAP do not measure $\Omega_{\Lambda}, \Omega_{DM}, \Omega_{DE}$ etc. This quantities are part of a standard cosmological model assuming Einstein's gravity to be valid. When the mathematical model is applied to WMAP observations, then the corresponding energy densities are fixed.

Consequences: more matter (cold and dark), scalar fields or gravity modifications.

4 Accelerated universe today! (in the past: inflation)

Consequences: ¡A repulsive force! : cosmological constant, scalar fields, quintessence or modifications to gravity.

- \Rightarrow Early universe requires an inflationary epoch: causality and flatness.
- Solution: cosmological constant \Rightarrow scalar fields are produced by a cosmological vacuum: negative pressure.

5 General relativity

- \Rightarrow Hilbert–Einstein action:

$$S = -mc \int \mathrm{d}s - \frac{1}{16\pi G} \int (R + 2\Lambda) \sqrt{-g} \,\mathrm{d}^4 x + \int L_{\mathrm{m}} \sqrt{-g} \,\mathrm{d}^4 x. \quad (1)$$

- The problem with (1) is that R is not the only possibility. [It can be changed by f(R) or contractions of Riemann's tensor that produce a scalar! !!
- \checkmark Variations of (1) produce:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau} = 0, \qquad \qquad G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} + \Lambda g_{\mu\nu}. \qquad (2)$$

☆ Note: Einstein made: $G_{\mu\nu} \propto T_{\mu\nu}$. This relation has been corroborated experimentally. E.g. Eddington & solar eclipse, mercury's perihelium, pulsar's decay, gravitational redshift... in scales \leq solar system!

6 Modifications to gravity

Theories of gravitation			
Standard	Alternatives to GR	Unified field theories	Other
History of gravitational theory Newtonian gravity (NG) Classical mechanics General relativity (GR) History Mathematics Resources Tests Tistss Twistors [S]	 Classical theories of gravitation [S] Conformal gravity [S] Scalar theories Nordström Yilmaz Scalar-tensor theories [S] Brans-Dicke Self-creation cosmology Bimetric theories [S] Other alternatives Einstein-Cartan Cartan connection Whitehead [S] Nonsymmetric gravitation [S] Scalar-tensor-vector [S] Tensor-vector-scalar [S] 	 Teleparallelism Geometrodynamics Quantum gravity Semiclassical gravity Discrete Lorentzian QG [S] Euclidean QG [S] Induced gravity [S] Loop quantum gravity Wheeler-deWitt eqn Theory of everything Supergravity M-theory Superstrings String theory topics 	 Higher-dimensional GI Kaluza-Klein DGP model [S] Alternatives to NG Aristotle Fatio-Le Sage MOND Unclassified Composite gravity [S] Massive gravity [S]

Source: wikipedia.org

- ☆ Einstein modified his theory interested in unification, taking ideas of Kaluza and Klein.
- ☆ The necessity of modifying Einstein's gravity came with ideas of Eddington and Dirac.
- ☆ Fundamental constants of physics: $G, e, \hbar, c, .$
- $\Rightarrow Their numerical value fits perfectly nuclear reactions, structure formation in the universe, etc.$
- ☆ Okun represented the importance of these constants using a three dimensional cube, the so called Okun's cube:

- \checkmark Take: $G, e, \hbar, c, m_{\text{prot}}$.
- ☆ The value of these dimensional quantities depends critically of the system of units used. Experimentally, one chooses always dimensionless quantities to avoid dependencies on the system of units chosen.
- \Rightarrow For example, Stoney (1874) built:

$$m_{\rm J} = \left(e^2/G\right)^{1/2}, \quad l_{\rm J} = \left(Ge^2/c^4\right)^{1/2}, \quad t_{\rm J} = \left(Ge^2/c^6\right).$$
 (3)

Another example, the good one is the Natural units of Planck (1899):

$$m_{\rm P} = (hc/G)^{1/2}, \quad l_{\rm P} = \left(Gh/c^3\right)^{1/2}, \quad t_{\rm P} = \left(Gh/c^5\right).$$
 (4)

☆ Dimensionally, using G, e, \hbar , c, m_{prot} its possible to built two dimensionless parameters:

$$\alpha := \frac{e^2}{\hbar c} = 0.007297352568(24) \approx \frac{1}{137.03599911(46)},$$

$$\alpha_G := \frac{Gm_{\text{prot}}^2}{\hbar c} \approx 10^{-38}.$$
(5)

 $\Rightarrow \alpha$ can be thought of the ratio of two energies:

$$\alpha = \frac{e^2/r}{hc/\lambda} \Big|_{\lambda=s}.$$
(7)

(8

- $\Rightarrow \alpha$ is the coupling constant between the proton and the photon in quantum electrodynamics.
- ☆ Value of α <u>CAN'T</u> be calculated theoretically.
- ☆ α is one of the 20 external parameters needed for the standard model of particle physics.
- Antropic arguments (Dicke): α must be well tuned. If α changes by say 4% then carbon can't be produced in the interior of stars. Even if α would change by a decimal value, stellar fusion would not occur.
- ☆ Feynman: "... one of the greatests mysteries of physics: a magic number that appears in nature and can't be understood by humans".
- ☆ Mathematically, with great precision (note that 29 y 137 are prime numbers, on the place 10 and 33 respectively):

$$\alpha = \frac{\cos(\pi/137)}{137} \frac{\tan(\pi/137 \times 29)}{\pi/(137 \times 29)} \approx \frac{1}{137.0359997867}.$$

- ☆ Physically, α has been calculated approximately using statistical mechanics.
- ☆ Feynman: "...from its discovery, it has been a mystery and all respectful theoretical physicist writes down this number and sticks it on its wall and worries about its meaning!!! "

7 Large number hypothesis: Dirac (1938).

Atomic scales come from dimensional combinations of e, c, m_a (e.g. proton mass) and $\hbar \Rightarrow$

$$R_{\rm a} = \frac{e^2}{c^2 m_{\rm a}}, \qquad T_{\rm a} = \frac{R_{\rm a}}{c}.$$

- ☆ Time (T_U) y size $(R_U = cT_U)$ of the Universe with a mass M_U , all together with a gravitational constant G.
- \Rightarrow These relations satisfy (in terms of dimensionless numbers):

$$\alpha := e^2/\hbar c \approx 1/137 \approx 10^0,$$

$$\frac{\text{Universe size}}{\text{proton size}} = \frac{cT_{\text{U}}}{R_{\text{a}}} \approx 10^{40},$$

$$\frac{\text{electric force}}{\text{gravitacional force}} = \frac{e^2}{Gm_a^2} \approx 10^{40}.$$
(9)

$$\Longrightarrow G \propto \frac{1}{T_{\rm U}}.$$
 (10)

8 α variations?

- ☆ Difficult to know which one varies: G, \hbar , e. Dirac assumed G. Gamow postulated e. To date nobody has postulated temporal variations on \hbar but people has done work on m_{prot} variations.
- ☆ Curiously, variations on the physical constants of nature were first done by Kelvin (c(t)). Weyl and afterwards, Eddington proposed the large number hypothesis, used greatly by Dirac.
- Teller (1948) showed that if $G \propto 1/T_{\rm U}$ then the earth's temperature on the past (pre–Cambrian epoch) would had been so elevated that life could not been sustained.
- ☆ Gamow suggested $e \propto 1/T_{\rm U}$, but its idea was quickly abandoned since it contradicted geophysical data and radioactive decay experiments.
- ☆ Dicke (1956) showed that the coincidence between the large numbers was because the age of the universe (i.e. time when we do our astronomical observations) ~ time spent by a star on the main sequence. ⇒ This time is then necessary in order to make observers made of elements heavier than H & He !!!

- These antropic arguments made by Dicke were not the only reason to conclude no-variations. He also repeated Eötvos experiment to determine with a greater precision the value of G.
- \checkmark Physical reasons to have variations of the fundamental constants:
 - Better candidates for unification (quantum theories of gravity) exist in greater dimensions \Rightarrow the shadows of the constants may vary easily when they vary on greater dimensions.
 - ☆ Most probably, the value of the physical quantities come from a spontaneous symmetry breaking (e.g. chaotic inflation).
 - \Rightarrow The strongest one is the experiment. Webb et al. (2001):

$$\Delta \alpha / \alpha = (-0.57 \pm 0.10) \times 10^{-5}, \tag{11}$$

for a sample of quasars in the interval $1 \leq z \leq 3.5$.

- In the 1960's Jordan–Brans–Dicke completed their theory to solve the problem G(t). This theory takes into account Mach's principle. This theory gives the foundations for what its known as scalar–tensor $(\phi, g_{\mu\nu})$ theories of gravity.
- ☆ For many decades scalar-tensor theories were used as the main way to understand gravity. Even Milgrom and Beckenstein tried to built a Relativistic Theory of MOND (RAQUAL) in the 1990's in order to account for relativistic phenomena similar to MOND.
- ☆ Beckenstein (2004) used a Tensor–Vector–Scalar (TeVeS) theory of gravity in order to built a relativistic theory of MOND.
- $\begin{array}{l} \checkmark & \text{Metric } f(R) \text{ theories are very natural generalizations of Einstein's gravity.} \\ \checkmark & \text{Action given by} \end{array}$

$$S = -m \int \mathrm{d}s - \int f(R) \sqrt{-g} \,\mathrm{d}^4 x + \int L_{\mathrm{m}} \sqrt{-g} \,\mathrm{d}^4 x. \tag{12}$$

 \checkmark Variations of (12) produce

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau} = 0, \qquad \qquad G_{\mu\nu} = T^{(\mathrm{mat})}_{\mu\nu} + T^{(\mathrm{curv})}_{\mu\nu}, \qquad (13)$$

where $T_{\mu\nu}^{(\text{mat})} := T_{\mu\nu}^{(\text{mat-std})} / f'(R)$ and $T_{\mu\nu}^{(\text{curv})}$ depends on f(R) and its derivatives up to 4th order.

9 Newtonian Theory Modifications (MOND)

☆ Milgrom (1980's) propose that in order to explain rotation curves in spiral galaxies there is no need for dark matter, only a modification to Newton's Universal Gravitation:

$$\frac{a^2}{a_0} = -G\frac{M}{r^2}.$$
 (14)

with $a_0 \approx 10^{-8} \,\mathrm{cm/s^2} \approx cH_0$.

☆ The problems with momentum conservation are solved with a full theory: AQUAL (Aquadratic Lagrangian) (Bekenstein, Milgrom 1984):

$$L = -\frac{a_0^2}{8\pi G} f\left(\frac{|\nabla\phi|^2}{a_0^2}\right) - \rho\phi, \qquad (15)$$

with $-\nabla \phi = \boldsymbol{a}$ and

$$f(y) = \begin{cases} y, & \text{Newton} \quad (a \gtrsim a_0) \\ y^{3/2}, & \text{MOND} \quad (a \lesssim a_0). \end{cases}$$
(16)

 \Rightarrow Field equations for AQUAL:

$$\nabla \cdot \left\{ f\left(\frac{|\nabla \phi|^2}{a_0^2}\right) \nabla \phi \right\} = 4\pi G\rho.$$
(17)

- \therefore Equation (17) coincides with MOND for systems with spherical symmetry and others.
- ☆ The problem is to make a relativistic theory that converges to AQUAL in the weak field limit.
- There is one solution: relativistic AQUAL (Bekenstein, Milgrom 1984) which introduces a scalar field ϕ and the field $g_{\mu\nu}$.
- ☆ The problem with relativistic AQUAL: waves are *acausal* and the theory does not produce gravitational lenses that bend light more than general relativity.

10 TeVeS (Bekenstein 2004)

- TeVeS (Tensor Vector Scalar): metric: $g_{\mu\nu}$, time-like vector: U^{α} and a scalar potencial ϕ .
- \bigstar Action:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R + L_U + L_\phi \right)$$
(18)

with

$$L_U = -MANY HORRIBLE TERMS$$

 $L_{\phi} = -MANY MORE$

and all depend on an "empirical potential"

$$V(\eta) = \text{SOME MORE},$$
 (19)

plus necessary coupling constants, etc.
¡It's certainly not something that occurs naturally!

TeVeS advantages:

- ☆ Non-relativistic limit is in agreement with phenomenology of extragalactic data.
- \Rightarrow Reproduces gravitational lensing observations.
- \checkmark It has "harmony" with cosmological results.
- ☆ There exist repulsive solutions in this theory which can reproduce acoustic peaks of WMAP (cf. recent articles of L.M. Diaz-Rivera).

The main problem with TeVeS: IT'S TOO COMPLICATED.

11 But TeVeS is just the beginning...

- A Metric theories of gravitation f(R) come from a variational principle, so they assure conservation of energy and momentum.
- A Metric theories of gravitation of the form $f(R) = R^n$ produce gravitational waves propagating at the velocity of light.
- Some theories of gravity produce light deflections greater than general relativity under certain values of the parameters r_m/s and α relevants for different astronomical environments (e.g. galaxy clusters and galaxies).
- ★ WE DO NOT HAVE IDEA WHAT DARK MEANS!!! We still have continue working on dark matter models and modifications of gravity ones.